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SUMMARY

This paper deals with the numerical simulation of two-phase �ows based on the solution of the Navier
–Stokes equations with a k –� turbulence model for the gas phase and a particle tracking model of the
disperse phase ful�lling the framework of the Eulerian–Lagrangian (PSI-Cell) approach. The numerical
procedures for the two phases are based on the domain decomposition method applied to a block-
structured grid. The complete code is parallelized for computers of MIMD architecture. The paper
gives a description of the numerical methods with special attention to the parallelization. Some test
calculations demonstrate the performance of the code. The numerical simulation of a �ow splitter from
the �eld of power engineering is presented as an example for a real world application of the method.
Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Disperse multiphase �ows are very common for processes in mechanical and thermal process
technology (e.g. gas–particle or gas–droplet �ows, coal combustion, pneumatical conveying,
erosion phenomena). Furthermore processes for the separation of solid particles from gases
or �uids and for the classi�cation and particle size analysis are an important �eld of interest
in process technology.
The numerical simulation of multiphase �ows includes both the calculation of the continuous

phase and the calculation of a high number of particle traces as a basis for deriving statistical
quantities as particle concentration, mean particle velocity, etc. As a �rst step the continuous
phase can be calculated independently of the disperse phase, later the interaction with the
disperse phase is to be included in the right hand side of the equations of motion in an
iterative way. For the disperse phase the authors apply the Lagrangian (PSI-Cell) approach,
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i.e. discrete particle trajectories are calculated. Each calculated particle represents a large
number of physical particles with the same physical properties.
Even a unique calculation of the continuous phase followed by the calculation of the dis-

perse phase can be very time-consuming. More than ever the iterative coupling of the two
phases demands clearly the use of parallel computation. In contrast to a strong activity in
developing e�cient parallel codes for �ow calculation there are only few publications on
particle tracking by the Lagrangian method on parallel computer systems. All methods known
to the authors su�er from a restricted parallelism by using the shared memory concept [1]
respectively copying the complete �ow �eld to all processors of the parallel machine [2, 3] or
from the risk of a low parallel e�ciency on massive parallel computers of MIMD architecture,
resulting from a naive static domain decomposition [4].
Section 2 gives a short description of the physical and mathematical background for calcu-

lating the �uid and particle phases.
Sections 3 and 4 explain the solving methods and parallelization strategies. For the calcu-

lation of the disperse phase two parallelization strategies are presented. The �rst algorithm
applies a static assignment of grid partitions to the processors of the parallel machine (SDD—
static domain decomposition). As our results show, the parallel e�ciency of such a paral-
lelization method can be dramatically deteriorated. In the second parallelization method—the
so-called dynamic domain decomposition (DDD)—a dynamic assignment of grid and �uid
�ow information to processor nodes is used, leading to a considerably increased parallel ef-
�ciency and a higher degree of �exibility in the application of the computational method to
di�erent �ow conditions.
Section 5 presents numerical experiments concerning the performance of the code and is

focused on parallel e�ciency. Most of the calculations have been performed on parts of the
Chemnitz Linux Cluster (CLiC) consisting of 528 Intel Pentium III 800MHz processors and
a FastEthernet network.
In Section 6 the direct Eulerian–Lagrangian approach is applied to a �ow in the �eld of

power engineering. The appliance which is investigated numerically is a �ow splitter with
complex interior guiding vanes called bifurcator. It is used for pneumatical transport of coal
particles and the split of the overall coal particle mass �ow rate from the coal mills to the
burners of a coal-�red power plant.
The results show an e�cient operation of our code and give a deeper understanding of the

�ow structure in the bifurcator.

2. PHYSICAL AND MATHEMATICAL FUNDAMENTALS

2.1. Basic equations of �uid motion
The �uid phase considered here is assumed to be Newtonian and to have constant physical
properties. The �uid �ow is three-dimensional, steady, incompressible, turbulent and isother-
mal. Fluid turbulence is modelled using the standard k –� model and neglecting the in�uence
of particle motion on �uid turbulence. Under these assumptions the time-averaged equations
describing the motion of the �uid phase are given by the following form of the general
transport equation:

@
@xj
(�FuFj�)−

@
@xj

(
�
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@xj

)
= SF + SP (1)
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Table I. Flow variables, transport coe�cients and source terms for the basic equations.
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Here � is a general variable, � a di�usion coe�cient, SF a general source term and SP
the source term due to momentum exchange between the �uid and the particle phase. The
variables uF1, u

F
2 and u

F
3 represent the �uid velocity components, k is the turbulent kinetic

energy and � the rate of dissipation of k. Generally index F indicates Fluid and P indicates
Particle. A detailed description of all terms and their correlations is shown in Table I. In this
table �F is the �uid density and � is the laminar viscosity.

2.2. Equations of motion of the disperse phase

The disperse phase is treated by the application of the Lagrangian (PSI-Cell) approach, i.e.
discrete particle trajectories are calculated. Each calculated particle represents a large number
of physical particles of the same physical properties. This is achieved by a particle number �ow
rate ṄP prescribed to each calculated trajectory. The prediction of the particle trajectories is
carried out by solving the ordinary di�erential equations for the particle location and velocities.
Assuming that the ratio of �uid density to particle density is small (�F=�P�1) these equations
read

d
dt
xP = uP (2)
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where the rotation of the particle can be calculated from the following equation:

d
dt
! = − 15

16�
�F
�P
!rel�m(Re!)(!−�) (4)

In these equations � is the �uid kinematic viscosity, dP the particle diameter and !rel the
absolute value of the relative rotational velocity between �uid and particle. The terms on
the right hand side of (3) represent the drag force exerted on the particle by the �uid, the
lift force due to particle rotation (Magnus force), the lift force due to �uid velocity shear
(Sa�man force), the gravitational and added mass forces, respectively. The values for the
coe�cients CD, CA, CM and �m can be found in References [5, 6]. Inter-particle collisions
are described by collision probability models due to Oesterle [7, 8]. Particle–wall interaction
was modeled according to the virtual-wall model by Sommerfeld [9] in the modi�ed wall
roughness formulation of Frank et al. [10]. The e�ect of �uid turbulence on the motion of
the disperse phase is modelled by the Lagrangian stochastic-deterministic (LSD) turbulence
model. The particle’s in�uence on the �uid phase is modelled by the PSI-Cell (particle-
source-in-cell) method proposed by Crowe et al. [13]. A more detailed description of all
particular models involved in the Lagrangian particle trajectory calculation can be found in
References [6, 11–13].

3. SOLUTION ALGORITHM

For the numerical solution of the equations described in the preceding section the physical
space has to be discretized. Therefore a boundary-�tted, non-orthogonal numerical grid is
used. The grid is block-structured and consists of hexahedral cells. The equations of �uid
motion (1) are numerically solved on the basis of a collocated �nite volume discretization.
The SIMPLE method with convergence acceleration by the multigrid technique method is
applied, see Reference [14]. When a converged solution for the �uid �ow �eld has been
calculated, the prediction of the particle motion is carried out. Therefore Equations (3) and
(4) are solved using a standard 4th order Runge–Kutta scheme. In case of two-way-coupled
multiphase �ow systems the source terms SP according to the PSI-Cell method are predicted
simultaneously during trajectory calculation. After all particle trajectories are calculated the
source terms are included in the �uid momentum equations and a new solution for the �uid
�ow �eld is computed. In the case of neglectable phase interaction (the so-called one-way
coupling) a single iteration step is su�cient to obtain the solution for the �uid and particle
motion.
The iterative algorithm for the numerical simulation of the coupled two-phase �ow can be

summarized as follows:

1. calculation of a �rst solution for the �uid �ow �eld without taking the source terms of
the disperse phase SP into account,

2. tracing a large number of particles through the �ow �eld and computing the source terms
SP simultaneously,

3. recalculation of the �uid �ow �eld including the source terms SP of the disperse
phase,

4. repeating Steps 2 and 3 until the solution of the coupled equations has converged.
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Figure 1. Domain decomposition for the numerical grid.

4. PARALLELIZATION METHODS

4.1. Parallel algorithm for �uid �ow calculation

The parallelization of the solution algorithm for the set of continuity, Navier–Stokes and
turbulence model equations is carried out by the domain decomposition or grid partitioning
method. Using the block structure of the numerical grid the �ow domain is partitioned into
a number of subdomains (Figure 1). Usually the number of grid blocks exceeds the number
of processors, so that each processor of the parallel machine (PM) has to handle a few blocks.
The grid-block-to-processor assignment is given by a heuristically determined block–processor
allocation table and remains static and unchanged over the time of �uid �ow calculation
process. Fluid �ow calculation is then performed by individual processor nodes on the grid
partitions stored in their local memory. Flow characteristics along the grid block boundaries
which are common to two di�erent nodes have to be exchanged during the solution process
by inter-processor communication, while the data exchange on common faces of neighbouring
grid partitions assigned to the same processor node can be handled locally in memory.

4.2. Parallel algorithms for the Lagrangian approach

The prediction of the motion of the disperse phase is carried out by the application of the
Lagrangian approach as described in Section 2.2. In the following we consider two paral-
lelization strategies. The static domain decomposition (SDD) method is the most obvious
and simplest one. It calculates all trajectory segments at the processors, where the �uid
�ow data are available from the �ow calculation step. The method is easy to implement
but can lead to poor load balancing, because the e�ort for calculating particle trajectories
in general is not uniformly distributed in the �ow domain even if there is a uniform par-
ticle distribution at the inlet. An e�cient parallelization of Lagrangian solution algorithm
has to take into consideration that the distribution of the work load is not known a priori.
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Figure 2. Static domain decomposition (SDD) method for the Lagrangian solver.

The dynamic domain decomposition (DDD) method points out how this can be achieved by
a more �exible concept for calculating particle trajectory segments including grid and �ow data
provision.
Method 1: static domain decomposition method. The �rst approach in parallelization of

Lagrangian particle trajectory calculations is the application of the same parallelization scheme
as for the �uid �ow calculation to the Lagrangian solver as well. In this approach geometry
and �uid �ow data are distributed over the processor nodes of the parallel machine (PM) in
accordance with the block–processor allocation table as already used in the �uid �ow �eld
calculation of the Navier–Stokes solver. Furthermore an explicit host-node process scheme is
established as illustrated in Figure 2. The trajectory calculation is done by the node processes
whereas the host process carries out only management tasks. The node processes are identical
to those that do the �ow �eld calculation. Now the basic principle of the SDD method is that
in a node process only those trajectory segments are calculated that cross the grid partition(s)
assigned to this process. The particle state (location, velocity, diameter, etc.) at the entry
point to the current grid partition is sent by the host to the node process. The entry point
can either be at an in�ow cross section or at a common face/boundary to a neighboring
partition. After the computation of the trajectory segment on the current grid partition is
�nished, the particle state at the exit point (outlet cross section or partition boundary) is sent
back to the host. If the exit point is located at the interface of two grid partitions, the host
sends the particle state to the process related to the neighboring grid partition for continuing
trajectory computation. This redistribution of particle state conditions is repeatedly carried
out by the host until all particle trajectories have satis�ed certain break condition (e.g. an
outlet cross section is reached). During the particle trajectory calculation process the source
terms for momentum exchange between the two phases are calculated locally on the processor
nodes 1; : : : ; N from where they can be passed to the Navier–Stokes solver without further
processing.
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Poor load balancing can be a serious disadvantage of the SDD method, as shown later for
the presented test cases. Reasons for this behavior can be

1. Unequal processing power of the calculating nodes, e.g. in a heterogeneous workstation
cluster.

2. Di�erences in particle concentration distribution throughout the �ow domain. Situations
of poor load balancing can occur e.g. for �ows around free jets/nozzles, in recirculating
or highly separated �ows where most of the numerical e�ort has to be performed by
a small subset of all processor nodes used.

3. Multiple particle–wall collisions. Highly frequent particle–wall collisions occur espe-
cially on curved walls where the particles are brought in contact with the wall by the
�uid �ow multiple times. This results in a higher work load for the corresponding pro-
cessor node due to the reduction of the integration time step and the extra e�ort for
detection and calculation of the particle–wall collision itself.

4. Flow regions of high �uid velocity gradients/small �uid turbulence time scale. This
leads to a reduction of the integration time step for the Lagrangian approach in order
to preserve accuracy of the calculation and therefore to a higher work load for the
corresponding processor node.

Method 2: dynamic domain decomposition method. This method has been developed to
overcome the disadvantages of the SDD method concerning the balancing of the computational
work load. In the DDD method there exist three classes of processes: the host, the servicing
nodes and the calculating nodes (Figure 3). Just as in the SDD method the host process
distributes the particle initial conditions among the calculating nodes and collects the particle’s
state when the trajectory segment calculation has been �nished. The new class of servicing
nodes uses the already known block–processor assignment table from the Navier–Stokes
solver for storage of grid and �uid �ow data. But in contrast to the SDD method they do not
perform trajectory calculations but delegate that task to the class of calculating nodes. So the
work of the servicing nodes is restricted to the management of the geometry, �uid �ow and
particle �ow data in the data structure prescribed by the block–processor assignment table.
On request a servicing node is able to retrieve or store data from/to the grid partition data
structure stored in its local memory.
The calculating nodes are performing the real work on particle trajectory calculation. These

nodes receive the particle initial conditions from the host and predict particle motion on an
arbitrary grid partition. In contrast to the SDD method there is no �xed block–processor
assignment table for the calculating nodes. Starting with an empty memory structure the
calculating nodes are able to obtain dynamically geometry and �uid �ow data for an arbitrary
grid partition from the corresponding servicing node managing this part of the numerical
grid. The correlation between the required data and the corresponding servicing node can be
looked up from the block–processor assignment table. Once geometry and �uid �ow data for
a certain grid partition has been retrieved by the calculating node, this information is locally
stored in a pipeline with a history of a certain depth, which can be limited by an adjustable
parameter. It has further to be mentioned that a servicing node process does not have to be
executed on a separate physical processor, since the work load is quite neglectable. In current
MPI implementations the servicing node process is implemented as separate node process and
is executed in parallel to the corresponding calculating node process on the same physical
processor. Furthermore the host process is also executed on one of the N processors of the
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Figure 3. Dynamic domain decomposition (DDD) method for the Lagrangian solver.

PM keeping the number of used processors constant in comparison with the Navier–Stokes
solver.

5. NUMERICAL EXPERIMENTS

5.1. MIMD computer architectures and MPI implementations

The di�erent parallelization methods are based on the paradigm of a MIMD computer architec-
ture with explicit message passing between the node processes of the PM. The implementation
uses an encapsulated communication layer which can operate on top of standard MPI or PVM
communication libraries (the latter from historical reasons). Usable communication libraries
have to be in compliance with MPI 1.1 or PVM 3.2 standard.
Investigations presented in this paper were carried out on three di�erent computer archi-

tectures. Most of the calculations have been performed on an AMD/Athlon PC cluster or on
the Chemnitz Linux Cluster CLiC. For performance comparison we used the CRAY-T3E at
the Dresden University of Technology. Table II summarizes the most important properties
of the three computer systems. The calculations on the PC clusters were performed with
MPI distributions of MPICH 1.2.0 and LAM-MPI 6.3.2. On the CRAY we used the message
passing toolkit MPT 1.2.1.0 containing MPI and PVM message passing libraries.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:1253–1271



NUMERICAL SIMULATION OF DISPERSE MULTIPHASE FLOWS 1261

Table II. Parallel computing systems.

Computer platform CPU Memory in MB Network

PC-Cluster 12 AMD=Athlon, 600 MHz 12× 512 Fast ethernet
CLiC 528 Intel P III, 800 MHz 528× 512 Fast ethernet
CRAY-T3E 64 DEC Alpha 21164300 MHz 64× 128 Gigaring

Figure 4. Flow through a bent duct: grid blocks, absolute velocity and two particle trajectories:
(a) bent duct with blades; (b) bent duct without blades.

5.2. Description of the test cases

Two test cases are investigated. The �rst test case is a dilute gas–particle �ow in a three times
bent channel with square cross section of 0:2 × 0:2 m2. In all three channel bends 4 corner
vanes are installed, dividing the cross section of the bend in 5 separate corner sections (see
Figure 4). The vanes are modelled as in�nitely thin solid walls within the �ow region (non-
slip condition). The duct has been subdivided into 64 blocks, the number of �nite volumes
for the �nest grid is 80 ∗ 80 ∗ 496 = 3174 400; because of the blades no more than three
coarser grids can be used for the multigrid method. This means that the coarsest grid with
only two cells between the blades has 10 ∗10 ∗62 = 6200 �nite control volumes. At the inlet
a plug velocity pro�le with 10:0 m=s is given (ReF = 156 000), at the outlet a zero gradient
condition is implemented. The particle phase with particle diameters of dP = 4; : : : ; 20�m and
a density of �P = 2500 kg=m

3 has initially a uniform concentration distribution over the inlet
cross section of the duct. For each of the test case calculations 5000 particle trajectories have
been calculated. Similar con�gurations are used for e.g. pneumatical conveying of granular
material in channels and pipes.
The second test case di�ers from the �rst one by omitting the vanes in the channel bends.

This leads to the development of a counter clockwise swirling �uid �ow and due to the
centrifugal forces acting on the particles to a strong separation of the particle phase from the
�uid �ow. Demixing of the particle phase starts immediately after the �rst bend and leads to
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Figure 5. Convergence of the single- and multi-grid method on a sequence of re�ned grids.

the formation of a particle rope after the third channel bend. This test case has been introduced
as an example of a strongly separated gas–particle �ow in order to prove the suitability and
performance of the developed load balancing algorithms for such kind of separated multiphase
�ows leading to poor parallel e�ciency with the so far used SDD method.

5.3. Results

5.3.1. Flow calculation. The �rst test compares the convergence of two algorithms which
use the multigrid (MG) method in di�erent way. The �rst algorithm, denoted as single—grid
method, is the common SIMPLE method where only the pressure calculation is accelerated
with the MG method. Although this inner MG method leads to a much faster convergence
of the iteration for the complete system the dependence of the number of iterations needed
for a prescribed accuracy on the number of unknowns cannot be overcome in this way.
The second algorithm, denoted as multigrid method, applies the MG-method to the complete
system of equations and uses the SIMPLE-algorithm as smoothing method and coarse grid
solver. The MG-acceleration for the pressure calculation is used additionally.
In the test the �ow through the bent duct with blades is calculated on a sequence of re�ned

grids. Figure 5 includes single-grid runs on four grids (SG1-SG4) with 10 ∗ 10 ∗ 62 (coarsest
grid) up to 80 ∗ 80 ∗ 496 �nite volumes and multigrid runs starting on the two �nest grids
(MG3, MG4). N denotes the number of SG iterations or MG cycles. The curves show that the
number of iterations for the SG method increases while the number of MG cycles remains
constant if the grid is re�ned. The total calculation times are decreased by the multigrid
technique up to 1% of the original SIMPLE method.
By the way the calculations on the four grids pointed out that the solutions on the �nest

grid can be considered to be mesh-independent.
Figure 6 summarizes the parallel e�ciency of the MG method on the CRAY-T3E and on

the CLiC for a series of runs on an increasing number of processors. All calculations are
performed for the bent duct with 64 blocks and 396 800 or 3 174 400 �nite volumes on the
�nest grid. Generally the parallel e�ciency is better for the calculations on the CRAY. This
is due to the faster communication network. Table III shows calculation times T cal and the
times needed for data exchange T e for the runs on the coarser grid. While with a growing
number of nodes the ratio T e=T cal remains constant on the CRAY it grows from 0.42 to 0.8
on the CLiC. The run on the �ne grid demonstrates that on the CLiC the parallel e�ciency
is fairly good as long as the number of �nite volumes per node is not too small.
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Table III. Calculation times and data exchange times for an increasing number of nodes.

Number of nodes 8 16 32 64

CRAY: T cal 1661 863 499 349
T e 396 199 103 80
T e/T cal 0.24 0.23 0.21 0.23

CLiC: T cal 1022 669 449 249
T e 434 400 330 200
T e/T cal 0.42 0.60 0.73 0.80
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Figure 7. Parallel e�ciency and total calculation times vs. number of processor nodes; comparison of
parallelization methods for both test cases.

More details of the parallelization method and further results for �uid �ow calculation can
be found in Reference [2].

5.3.2. Particle calculation. For the test case calculations the total execution time, calculation
time, communication time and I/O time have been measured for the execution of one iteration
cycle of the Lagrangian solver. This means the calculation of 5000 particle trajectories. All
calculations in this experiments have been carried out on the second �nest grid level with
40 ∗ 40 ∗ 298 = 396:800 CVs.
Figure 7 shows the parallel e�ciency and total calculation times for calculations on both

test cases with SDD and DDD methods vs. the number of processor nodes.
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It can be seen from the �gure that the DDD method has a clear advantage over the SDD
method. The advantage is less remarkable for the �rst test case than for the second one. This is
due to the fact, that the gas–particle �ow in the �rst test case is quite homogeneous in respect
to particle concentration distribution which leads to a more balanced work load distribution in
the SDD method. So the possible gain in performance with the DDD method is not as large
as for the second test case, where the gas–particle �ow is strongly separated and we can
observe particle roping and sliding of particles along the solid walls of the channel leading
to a much higher amount of numerical work in certain regions of the �ow. Consequently the
SDD method shows a lower e�ciency and the highest execution times for the second test
case due to poor load balancing between the processors of the PM.
The e�ciency of the work load balancing introduced into the Lagrangian approach by the

DDD method is clearly re�ected in the calculation and communication times measured for
the processors of the PM. We consider two runs for test case 2 on eight processors (without
a �gure). In the SDD method two nodes use the largest amount of calculation time (about
90%) while the other nodes show up to 80% communication (waiting) time. For the DDD
method the distribution of work load becomes very uniform with calculation times of about
90% on all physical processors. This balanced work load behavior remains unchanged also
for larger numbers of processors and leads to the signi�cantly increased parallel performance
in comparison with the traditional SDD method.

6. NUMERICAL SIMULATION OF THE FLOW IN A FLOW SPLITTER

As an example we present the application of the method to a �ow in the area of power
engineering. The device of interest is a so-called bifurcator which is used in large coal-�red
power plants. This bifurcator belongs to the very complex pipework between coal mills and
burners that is necessary to ensure a preferably uniformly distributed supply of the burners
with pulverized fuel from the coal mills even in the case when a single mill will turn out.
Because of the complexity, the pipework consists among other things of a number of bends
that cause the emergence of particle ropes mainly as a result of centrifugal forces.
These ropes would in�uence the distribution of the pulverized fuel to the burners in a neg-

ative manner. The result of such an unequal supply of the burners with coal is a lower
e�ciency and higher output of pollutants and must be avoided. That’s why special attention
is turned to the disintegration of the ropes. For these purposes the bifurcator contains a very
complex �xture called a ri	e box (see Figure 8(a)). In detail it consists of a system of 64
di�erently inclined channels and directly attached to these a system of vanes that lead the �ux
alternating to the both legs of the bifurcator. If a rope meets the ri	e box, it is dispelled by
the checkerboard like system of channels in several parts that are then distributed uniformly
to the both legs because adjacent channels always lead to di�erent legs.
The investigation of the real object is very di�cult because experiments in a power plant at

work are impossible and experiments for a model in original scale would be too expensive due
to the large dimensions of the rope splitting device. Experiments are realized by A. Aroussi
at the University of Nottingham on a one-third scale model. A part of the experiments has
been performed with all internals (the complete ri	e box). In this case the particle mass �ow
through the two outlets was measured. Velocity distributions were measured at three places
in the pipes up and downstream the bifurcator without the internals.
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Figure 8. (a) Whole ri	e box and (b) Ri	e box, Lower part.

Figure 9. Ri	e box: (a) Lower part, detail; (b) Upper part, detail.

The construction of a numerical grid is quite di�cult because of the complex structure
mainly of the ri	e box. First of all the 64 channels inclined against each other (see detail of
the grid in Figure 9(a)) are a serious problem especially for a structured grid that consists
of hexahedrons (see detail of the grid in Figure 9(a)). So the grid in this region has to
split alternating into di�erent branches that pass either a left inclined or a right inclined
channel. To realize this, a thin layer between the sets of left and right inclined channels is
not belonging to the gridded area and form a thin wall of �nite thickness. After the passing
of the channels the grid unites again and must map to the guiding vanes that lead alternating
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Figure 10. Shaded contours of the absolute velocity in the bifurcator, (black: 0 m=s; white: 36 m=s).

to the left and the right leg of the bifurcator and forms a triangular structure (see detail of
the grid in Figure 9(b)), which is also di�cult to grid with hexahedrons. In this case the
triangle is divided into 3 quadrangles. The shape of these quadrangles is determined by the
guiding vanes sitting on the triangles that lead either to the right as seen in Figure 9(b)
or (alternating) to the left. The position of the guiding vanes marks the block boundaries
in the interior of the triangle that cause another di�culty. Since the grid is structured, the
subdivisions on the longer (outside of the triangle) edge are to �nd on the opposite edge.
That means a considerable contraction of the grid within these blocks and simultaneously the
so-called bad angles that are a general problem in the complex bifurcator geometry.
The result of the grid generation process are grids with about 2 millions of cells de-

pending on the concrete case of application. The examples di�er for instance from the form
of the incoming �ow region. So the inlet channel geometries had been varied for di�er-
ent real installation conditions of the bifurcator (straight or bent inlet; varying inlet channel
length).
The computations were performed on a cluster of 12 PC with Athlon processors running

under the operating System LINUX. The predictions start with an uniformly distributed inlet
velocity of 30 m=s.
Results of the computations can be seen in Figures 10 and 11. Figure 10 gives an impression

of the complex block structure especially in the region of the rope splitting ri	e box. On the
other hand there are slices through the geometry that show the contour of the �eld of the
resulting absolute velocity, where the velocity increases from black to white (black: 0 m=s;
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Figure 11. Particle trajectories in the �ow splitter.

white: 36 m=s). Good to observe is the �ow through the 64 inclined channels. The �ow
through the upper part of the ri	e box can be seen in the highest of the three horizontal
planes and shows the alternating distribution to the left and the right leg of the bifurcator.
The illustration of the complex �ow is completed by the slice in a plane perpendicular to the
others.
In Figure 11 the operation of the ri	e box is illustrated by drawing a number of particle

trajectories. The particles were injected in the stream in a cross section that forms a distinct
rope, which would leave the bifurcator completely through one leg in absence of the ri	e
box. But the rope is distributed relatively uniform to both legs due to two e�ects: First the
rope is dispersed only under the in�uence of the turbulent motion in the �ow and therefore
enters more than one of the 64 channels. Secondly the rope is distributed by the ri	e box to
the both legs, because a particle is guided through the other leg, when it enters an adjacent
channel even in the case when the rope is situated very close to one wall (or leg). This
situation can be found e.g. when a bend is close to the inlet of the bifurcator. In addition
to the trajectories in Figure 11 a number of statistical quantities of the particle phase was
investigated. For example the distribution of the mean particle diameter (Figure 12) and the
particle number density (Figure 13) was predicted by tracking 450 ∗ 450 = 202500 particles
through the geometry. To obtain a non-uniform distribution of the basic �ow and the particle
phase in front of the ri	e box, a 90◦ bend is added in the input region that causes an
enrichment of particles on the left hand side of the cross-section. Especially the particles of
higher diameters were carried to the left because of their higher mass and the resulting higher
inertia (see Figure 12). The principle function of the bifurcator with the ri	e box is good
to observe. Although the particles were found mostly on the left of the cross-section in front
of the bifurcator, the ri	e box makes sure that the particle mass �ow is subdivided nearly
uniformly to both legs of the bifurcator. Also to observe is the function of the guiding vanes
especially in the upper parts of the ri	e box. The particles concentrate near these vanes due to
inertial e�ects and form certain ropes (the white areas in Figure 13) that will be redistributed
upstream over the whole cross-section by turbulence e�ects.
The principal function of the rope splitting devices was investigated in a number of ex-

periments at the University of Nottingham. The bifurcator was operated completely without
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Figure 12. Distribution of mean particle diameter (black: 4 �m; white: 20 �m).

Figure 13. Distribution of mean particle number density (black: 0 s−1 m−3; white: 1010 s−1 m−3).

internals, only with the lower part of the �ttings and with the combination of the lower and
upper part (the complete ri	e box). The mass �ow throughout the two outlets was recorded.
A good function of the rope splitter was only to observe, when the complete internals were
used. This result is not much surprising, because only the combination of lower and upper
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Figure 14. Comparison of velocity components in an outlet of the bifurcator;
(a) longitudinal component; (b) transversal component.

part of the ri	e box ensures that the mass �ow through adjacent �elds of the lower part is
guided to di�erent legs of the bifurcator and so ropes are splitted.
A major problem in such large 3d Lagrangian particle simulations is the statistical reliability

of the obtained results. Even the high number of 202500 particles cannot ensure that every
grid cell is crossed by at least one particle. The comparison with a calculation with 102400
particles, however, shows that the chosen number is completely su�cient to point out the
behaviour of the particle phase. For integral quantities as the mass �ow rate through the
outlets still fewer particles give quite reliable results. For the two outlets of the bifurcator
we obtained the particle mass �ow ratios 48.14:51.86 with 22500 particles, 48.93:51.07 with
102400 particles and 48.74:51.26 with 202500 particles.
The results of the computations are compared with measurements of the �ow in a bifurcator

without internal �ttings (ri	e box) and with a long pipe inlet including three bends at the
upstream side, because experimental data of the velocity distributions were available only for
this case. For the purpose of veri�cation of our computational results the existence of internals
is not mandatory.
As an example for the comparison we present velocity distributions in one of the legs

of the bifurcator. The measurements were done in a rectangular measuring area situated in
the middle of the pipe (viewing window for the PIV measurements), where the lower left
corner corresponds with the origin of the X-co-ordinate. The comparison is diagrammed in
Figure 14(a) and 14(b). V is the velocity component in the main �ow direction and U the
appropriate rectangular one.
Generally it is to realize, that the computations characterize the principal behaviour of the

�ow. So a double helix of particle ropes arising from the bends is fully reproduced also
in the numerical simulations whereas the comparison at a certain cross section sometimes
shows di�erences concerning the precise position of the rope. This is due to some inevitable
di�erences in the initial conditions between experiment and computation. (For example the
uniform velocity and concentration distributions in the inlet cross section are hardly to obtain
in the experiments done on the test rig.) Consequently some more or less di�erent results
are to observe between experiment and computation if the velocity distributions along a well-
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Figure 15. Comparison of (a) measured; and (b) computed velocity
components in an outlet of the bifurcator.

de�ned cross section are compared. This is illustrated in Figure 15(a) and 15(b). The thin
lines in 15(a) represent a certain number of measurements and show thereby the �uctuations in
the �ow. The thicker lines are trendlines and represent a compensation of these �uctuations
over the time. Figure 15(a) is therefore also an example for the di�culties and reliability
of the measurements in such complex �uid–particle �ows. Nevertheless the distributions of
longitudinal velocity components from experiments and from the numerical predictions were
found to be in qualitatively good agreement. The di�erences between the absolute values may
result from the above mentioned di�culties concerning the consistence of experiment and
computation and from uncertain measurements.

7. CONCLUSIONS

The paper presents the parallelized code MISTRAL=PartFlow-3D for the simulation of two-
phase �ows on computers of MIMD type. The code includes a multigrid accelerated SIMPLE
method for the �uid phase and two algorithms for the disperse phase, called static domain
decomposition (SDD) and dynamic domain decomposition (DDD) method. Performance re-
sults are given for two typical test cases. The CFD code and the DDD method show a fairly
good parallel e�ciency on a PC cluster with FastEthernet network.
The suitability of the code for solving real problems from engineering is demonstrated with

the application of the method to a �uid–particle �ow in the �eld of power engineering. The
code is applied to a quite complex technical component, the so-called bifurcator. The function
of the ri	e box within the bifurcator could be simulated. Solutions could be obtained for the
basic gas �ow and for the motion of the particle phase.
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